Characterization of Minimizers of Convex Regularization Functionals

نویسندگان

  • Christiane Pöschl
  • Otmar Scherzer
  • CHRISTIANE PÖSCHL
  • OTMAR SCHERZER
چکیده

We study variational methods of bounded variation type for the data analysis. Y. Meyer characterized minimizers of the Rudin-Osher-Fatemi functional in dependence of the G-norm of the data. These results and the follow up work on this topic are generalized to functionals defined on spaces of functions with derivatives of finite bounded variation. In order to derive a characterization of minimizers of convex regularization functionals we use the concept of generalized directional derivatives and duality. Finally we present some examples where the minimizers of convex regularization functionals are calculated analytically, repeating some recent results from the literature and adding some novel results with penalization of higher order derivatives of bounded variation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-convex PDE Scale Space

For image filtering applications, it has been observed recently that both diffusion filtering and associated regularization models provide similar filtering properties. The comparison has been performed for regularization functionals with convex penalization functional. In this paper we discuss the relation between non-convex regularization functionals and associated time dependent diffusion fi...

متن کامل

Finite Dimensional Approximation of Convex Regularization via Hexagonal Pixel Grids

This work extends the existing convergence analysis for discrete approximations of minimizers of convex regularization functionals. In particular, some solution concepts are generalized, namely the standard minimum norm solutions for squared norm regularizers and the R-minimizing solutions for general convex regularizers, respectively. A central part of the work addresses finite dimensional app...

متن کامل

Slope and G-Value characterization of Set-valued Functions and Applications to Non-differentiable Optimization Problems

In this paper we derive a generalizing concept of G-norms, which we call G-values, which is used to characterize minimizers of nondifferentiable regularization functionals. Moreover, the concept is closely related to the definition of slopes as published in a recent book by Ambrosio, Gigli, Savaré. A paradigm of regularization models fitting in this framework is robust bounded variation regular...

متن کامل

The representer theorem for Hilbert spaces: a necessary and sufficient condition

A family of regularization functionals is said to admit a linear representer theorem if every member of the family admits minimizers that lie in a fixed finite dimensional subspace. A recent characterization states that a general class of regularization functionals with differentiable regularizer admits a linear representer theorem if and only if the regularization term is a non-decreasing func...

متن کامل

Minimizers of Convex Functionals Arising in Random Surfaces

We investigate C1 regularity of minimizers to ́ F (∇u)dx in two dimensions for certain classes of non-smooth convex functionals F . In particular our results apply to the surface tensions that appear in recent works on random surfaces and random tilings of Kenyon, Okounkov and others.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006